Капилляры – мельчайшие кровеносные сосуды, пронизывающие все ткани и органы человеческого организма. По капиллярам кровь поступает к каждой клетке тела и доставляет ей кислород и питательные вещества, необходимые для жизни. Из клеток в кровь переходят продукты жизнедеятельности, которые в дальнейшем переносятся к другим органам или удаляются из организма. Обмен веществ между кровью и клетками тела может происходить только через стенку капилляров, поэтому их можно назвать главными элементами кровеносной системы. При расстройстве кровотока по капиллярам, изменении их стенки клетки тела будут испытывать голод, что постепенно приведет к нарушению их деятельности и даже гибели.
Артериолы и венулы
Капилляры – самые многочисленные и самые тонкие сосуды, их диаметр составляет в среднем 7–8 мкм. Капилляры широко соединяются (анастомозируют) между собой, образуя внутри органов сети (между доставляющими органам кровь артериями и выносящими кровь венами). Тонкие артерии, по которым кровь поступает в капиллярные сети, – это артериолы, а выносящие кровь мелкие вены – венулы. Артериолы, особенно те, от которых непосредственно ответвляются капилляры (прекапиллярные артериолы), регулируют поступление крови в капиллярные сети. Суживаясь или расширяясь, они перекрывают или, наоборот, возобновляют течение крови по капиллярам. Именно поэтому прекапиллярные артериолы называют кранами сердечно-сосудистой системы. Венулы вместе с более крупными венами выполняют емкостную функцию – удерживают имеющуюся в органе кровь.
Сердце и сосуды интересные факты
Длина всех кровеносных сосудов взрослого человека имеет протяжённость приблизительно 100 000 км. Все кровеносные сосуды образуют вместе с сердцем анатомическую основу для системы кровообращения и тем самым, транспорт кислорода и питательных веществ во всё тело.
Существуют различные виды кровеносных сосудов:
- Аорта
- Артерии
- Артериолы
- Капилляры
- Вены
- Венулы
- Полые вены
Аорта (основной артериальный сосуд большого круга кровообращения)
Аорта выходит прямо из сердца и поэтому несет название основной артерии. Она транспортирует кровь из левой камеры сердца к артериальным сосудам системы кровообращения.
Артерии (кровеносные сосуды, несущие кровь от сердца к органам)
Под артериями понимаются все кровеносные сосуды, которые транспортируют кровь от сердца в тело. За исключением лёгочной артерии, которая перемещает обеднённую кислородом кровь из правой половины сердца в лёгкие, остальные артерии транспортируют обогащённую кислородом кровь. Артерии также называют „бьющиеся жилы“ (дословно от нем. „Schlagader“) или „пульсирующие жилы“ (дословно от нем. „Pulsader“) (так их называют, потому что в крупным артериях можно нащупать пульс).
Артериолы (мелкие артерии)
В сосудистой системе артериолы -это переходная форма между артериями и капиллярами. Они предшествуют капиллярам и расположены позади артерий. Артериолы могут расширяться и сокращаться, и, таким образом, регулируют кровоток и кровоснабжение органов.
Капилляры (сосуды „тоньше волоса“)
Кровеносные капилляры (гемокапилляры) соединяют венозную и артериальную сосудистую систему. Они представляют собой тончайшие ответвления кровеносных сосудов и образуют тончайшую сеть, в которой происходит обмен веществ между кровеносными сосудами и тканями тела. В системе лимфатических сосудов лимфатические капилляры представляют собой начальное звено лимфатической системы, где собирается лимфатическая жидкость.
Вены (кровеносные сосуды)
Вены несут циркулирующую в теле кровь назад в сердце. Они делятся на глубокие и поверхностные вены, при этом более 90% всей крови оттекает по глубоким венам. У взрослого человека это соответствует ежедневно примерно 8000 литрам переносимой крови. За исключением лёгочных вен, все другие вены переносят венозную (обеднённую кислородом) кровь. Вместе с капиллярами и венулами, они относятся к системе низкого давления системы кровообращения.
Венулы (мелкие вены)
Венулы – это мельчайшие вены и их ещё можно разглядеть невооруженным глазом. Например, они есть в форме тончайшего сосудистого рисунка на склере глаз (белковая оболочка глаза).
Полые вены
Полые вены представлены в сосудистой системе двумя крупными венами, которые собирают венозную (обеднённую кислородом) кровь из вен тела и несут в правое предсердие. Есть верхняя полая вена, которая собирает кровь из головы, шеи, груди и верхних конечностей. Нижняя полая вена собирает кровь из брюшной полости, таза и ног.
Микроциркуляция
Капилляры, артериолы и венулы относятся к микрососудам, т. е. сосудам с диаметром менее 200 мкм. Движение крови по ним получило название микроциркуляции, а сами микрососуды – микроциркуляторного русла. Микроциркуляции придается большое значение в создании оптимальных режимов работающих органов, а в случае ее нарушения – в развитии патологического процесса. Ежесуточно по кровеносным сосудам протекает 8000–9000 л крови. Благодаря постоянной циркуляции крови поддерживается необходимая концентрация веществ в тканях, что нужно для нормального течения обменных процессов и поддержания постоянства внутренней среды организма (гомеостаз).
Строение капилляра
Стенка капилляра состоит из одного слоя эндотелиальных клеток, снаружи от которых лежит базальная мембрана. Стенка капилляра представляет собой естественный биологический фильтр, через который осуществляются переход питательных веществ, воды и кислорода из крови в ткани и обратное – из тканей в кровь – поступление продуктов обмена. Современные методы исследования, в частности электронная микроскопия, свидетельствуют, что стенка капилляра – не пассивная перегородка и существуют специальные пути активного транспорта веществ через нее. В переносе веществ участвуют стыки между эндотелиальными клетками, специальные поры, пронизывающие наиболее тонкие участки стенки капилляров кишечника, почек, эндокринных желез, и пузырьки для переноса жидкостей, имеющиеся внутри эндотелиальных клеток в стенке капилляров большинства органов.
Кровеносные сосуды и их виды
Сердце и кровеносные сосуды образуют замкнутую систему. Кровь, заключенная в кровеносные сосуды, не вступает в прямой контакт с клетками тканей органов. Вход веществ в эту замкнутую систему и выход из нее осуществляются только через стенки сосудов. Замкнутая кровеносная система обеспечивает наличие высокого и постоянного давления крови и ее быстрый возврат к сердцу.
Кровеносные сосуды представляют собой систему замкнутых трубок различного диаметра. Они выполняют транспортную функцию, регулируют кровоснабжение органов, осуществляют обмен веществ между кровью и окружающими тканями.
Кровеносные сосуды получают названия в зависимости от органа, который они кровоснабжают (например, почечная артерия), или кости, к которой они прилежат (например, локтевая артерия), и т. д.
Типы кровеносных сосудов
Артерии – это сосуды, которые несут кровь от сердца к органам и тканям.
Самая крупная артерия в организме человека – аорта. В артериях кровь движется под большим давлением.
Стенка их состоит из трех слоев:
- наружного – соединительно-тканного;
- среднего – мышечного, хорошо развитого, состоящего из гладкомышечных и эластических волокон;
- внутреннего – эндотелиальной оболочки.
Такие стенки являются прочными, толстыми и упругими.
Обычно артерии располагаются глубоко под мышцами.
Крупные артерии (диаметром до 2,5 см) разветвляются на более мелкие – артериолы, а затем на капилляры.
Вены – это сосуды, которые несут кровь от органов и тканей к сердцу. Их стенка, так же как и у артерий, состоит из трех слоев, но она гораздо тоньше и слабее, так как содержит меньше гладкомышечных и эластических волокон. В просвете вен имеются полулунные клапаны, которые препятствуют обратному току крови. Стенки вен легко сжимаются окружающими мышцами, что способствует движению крови к сердцу, так как кровь в венах течет под небольшим давлением.
Капилляры – это микроскопические сосуды, стенки которых состоят из одного слоя эндотелиальных клеток. Средний диаметр капилляров около 7 мкм, толщина стенок – 1 мкм, длина – 0,2–0,7 мм.
Общая площадь сечения всех капилляров тела составляет 6300 м2.
Именно в капиллярах кровь выполняет свои основные функции: отдает тканям кислород О2, питательные вещества и уносит диоксид углерода СО2 и другие продукты диссимиляции. Этому способствует, наряду с очень тонкой стенкой, незначительная скорость движения крови в капиллярах. Капилляры образуют сети, связывающие мелкие артерии и вены.
Строение стенок кровеносных сосудов
Стенки всех артерий, так же как и вен, состоят из трех оболочек: внутренней, средней и наружной. Толщина стенок и их тканевый состав у сосудов разных типов неодинаковы.
Внутренняя оболочка – интима состоит из плоских эндотелиальных клеток (эндотелиоцитов), расположенных на базальной мембране. В стенках большинства артерий находится много эластических волокон, образующих внутреннюю эластическую мембрану и придающих артериям эластичность, упругость. У мелких и средних (по толщине) вен внутренняя оболочка образует полулунной формы складки – клапаны, препятствующие обратному току крови.
Средняя оболочка (мышечная) состоит из гладких мышечных клеток. У артерий, по сравнению с венами, мышечная оболочка хорошо развита. Она содержит также эластические волокна, образующие у некоторых артерий наружную эластическую мембрану.
Наружная оболочка кровеносных сосудов состоит из рыхлой волокнистой соединительной ткани. В ней расположены нервы и кровеносные сосуды, питающие стенки сосудов.
1 – артерии 2 – капилляры 3 – вены
История изучения капиллярной сети
Хотя кровеносные капилляры были открыты М. Мальпиги еще в 1661 году, серьезное их исследование началось только в ХХ веке и привело к возникновению учения о микроциркуляции крови. Идея об исключительном значении капилляров в удовлетворении потребностей тканей в притоке крови была высказана А. Крогом, который за свои исследования в 1920 году был удостоен Нобелевской премии.
Собственно термин «микроциркуляция» стал употребляться только с 1954 года, когда в США состоялась первая научная конференция ученых, занимающихся капиллярным кровотоком. В России огромный вклад в изучение микроциркуляции внесли академики А. М. Чернух, В. В. Куприянов и созданные ими научные школы. Благодаря современным техническим достижениям, связанным с внедрением компьютерных и лазерных технологий, стало возможным исследовать микроциркуляцию в прижизненных условиях и широко использовать результаты в клинической практике для диагностики нарушений и мониторинга успешности лечения.
Особенности строения микроциркуляторного русла
Трудности изучения микрососудов на протяжении десятилетий были связаны с чрезвычайно малыми их размерами и сильной разветвленностью капиллярных сетей. Наиболее узкие капилляры находятся в скелетных мышцах и нервах – диаметр их составляет 4,5–6,5 мкм. В этих органах обмен веществ очень интенсивен. Более широкие капилляры имеют кожа и слизистые оболочки – 7–11 мкм. Самые широкие капилляры (синусоиды) расположены в костях, печени и железах, где их диаметр достигает 20–30 мкм.
Длина капилляров варьирует в различных органах от 100 до 400 мкм. Однако если все капилляры, имеющиеся в теле человека, вытянуть в одну линию, то их длина составит около 10 000 км. Такая колоссальная протяженность капилляров создает чрезвычайно большую обменную поверхность их стенки – около 2500–3000 кв. м, что примерно в 1500 раз превышает поверхность тела. Количество капилляров в разных органах неодинаково. Густота их расположения связана с интенсивностью работы органа. Например, в сердечной мышце на 1 кв. мм поперечного сечения приходится до 5500 капилляров, в скелетных мышцах – около 1400, а в коже всего 40 капилляров.
В настоящее время точно установлено, что разные органы имеют характерные особенности строения микроциркуляторного русла (количество, диаметр, плотность и взаимное расположение микрососудов, характер их ветвления и т. п.), обусловленные спецификой работы органа. При этом в большинстве случаев микроциркуляторное русло состоит из повторяющихся модулей, каждый из которых обслуживает свой участок органа. Это позволяет быстро приспосабливать кровоснабжение органа к изменениям его функционирования. Усложнение строения микроциркуляторного русла органов происходит постепенно, вместе с ростом и развитием человеческого организма. Нарастание количества микрососудов приурочено ко времени интенсивного увеличения массы органа, а структурное созревание (оформление модулей) микроциркуляторного русла завершается к моменту окончательного полового созревания (к 15–17 годам).
Конкурс «био/мол/текст»-2013
Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Своя работа».
Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.
Искусственное создание живых тканей, органов и даже целых организмов на протяжении всей истории человечества было предметом мифов, легенд и фантастических историй, и не давало покоя человеческому воображению. Идея создания органов и организмов из одного маленького кусочка живой ткани уходит своими корнями в глубокую древность. В культурной истории человечества как в зеркале отражается развитие взглядов на выращивание органов [1]. Примерами самого раннего возникновения этих идей можно считать древнегреческие мифы о Прометее, а также сотворение Евы из ребра Адама в библейских историях (рис. 1).
Рисунок 1. Сотворение Евы. Фреска Микеланжело Буонарроти (1508–1512).
В процессе того, как расширялись знания людей в понимании природы, возникали все новые научные подходы. Об этом свидетельствует убежденность ученых того времени, что живое существо можно создать с помощью алхимии, отраженная в работах Парацельса. Яркие примеры в искусстве и литературе демонстрируют желание человека самостоятельно создавать жизнь, используя возможности, которые были присущи той или иной эпохе; среди них «Лечение Юстиниана» Фра Анджелико (1439), «Фауст» Иоганна Гете (1774–1831), «Франкенштейн» Мэри Шелли (1818) и многие другие. Параллельно с развитием этих идей в культуре активно шли научно-практические работы по созданию и восстановлению частей человеческого тела. Предпосылками возникновения тканевой инженерии как науки было использование различных материалов для механической замены утерянного органа: различные имплантаты зубов из слоновой кости и металла, деревянные протезы ног и т.д. Но только прорывное открытие Росса Гаррисона (1870–1959), а именно культивирование клеток (то есть, их выращивание в лабораторных условиях) стало основой того, что можно считать классической тканевой инженерией [2].
То, что в одном веке считают мистикой, в другом становится научным знанием. Парацельс
В настоящее время тканевая инженерия работает над воплощением идей создания органов и их использования в клинической медицине. Тканевая инженерия не только претворяет в жизнь давние мечты и фантазии человечества, но также решает сложные задачи, связанные с заменой поврежденных органов у пациентов [3]. Хорошо известно, что большое число пациентов по всему миру нуждаются в срочной пересадке органов: сердца, легких, печени, почек и т.д., и не всегда дожидаются своей очереди. Кроме того, после пересадки донорского органа остаются проблемы, связанные с отторжением трансплантата. В свою очередь, тканевая инженерия позволяет создавать необходимые органы из клеток самого пациента, предотвращая тем самым негативную реакцию организма на чужеродный орган. Мочевой пузырь, выращенный из собственных клеток пациента, был первым тканеинженерным органом, который трансплантировали человеку. Эта работа была проведена ведущим специалистом в области тканевой инженерии Энтони Аталой (Anthony Atala) и его коллегами в 2006 году [4]. На сегодняшний день с помощью тканевой инженерии ученые создают кожу, кости, хрящи, поджелудочную железу, элементы сердечно-сосудистой системы и т.д. Также большой интерес представляет разработка тканеинженерных кровеносных сосудов, так как они крайне необходимы для проведения операций при заболеваниях, в результате которых у пациента нарушена проходимость сосудов для крови, и при этом невозможно использовать синтетические протезы [5].
Подробнее о принципах и успехах тканевой инженерии можно прочесть в статье «Тканевая инженерия — окно в современную медицину» [6]. — Ред.
Как для создания всех других органов, так и для изготовления тканеинженерного кровеносного сосуда необходимо три основных компонента. Первым и самым важным компонентом являются стволовые клетки, которые представляют собой основной строительный материал для формирования нужного органа. Клетки берут из костного мозга, крови или других тканей пациента и затем культивируют в специальных лабораторных условиях для увеличения их количества. Ткань, из которой получают клеточный материал для культивирования, выбирают в зависимости от того, какие клетки нужны для выращивания данного органа. Для кровеносного сосуда необходимо как минимум два типа клеток: гладкомышечные клетки, которые формируют стенку, и эндотелиальные клетки, которые выстилают внутреннюю поверхность кровеносного сосуда и предохраняют его от образования тромбов. В культуре клетки располагаются одним слоем, но в нашем организме они находятся в трехмерном пространстве, поэтому их необходимо каким-то образом организовать и придать им нужную ориентацию. Для этого в тканевой инженерии существует еще два компонента: матрица и биореактор.
Так называемая тканеинженерная матрица представляет собой каркас будущего органа и имеет пористую структуру. Поры необходимы для того, чтобы в них, как в нишах, располагались клетки. Форма матрицы соответствует форме органа, который необходимо вырастить. В случае с кровеносным сосудом матрица имеет форму трубки с пористыми стенками. Для создания тканеинженерной матрицы необходимо использовать абсолютно безопасный материал, который не вызывает каких-либо аллергических и иммунных реакций. Также для создания некоторых органов, а в особенности кровеносных сосудов, требуются матрицы, обладающие большой прочностью и эластичностью, чтобы выдержать давление, создаваемое током крови. В качестве материала чаще всего используют различные полимеры. К ним относятся природные материалы, такие как коллаген, хитозан, гиалуроновая кислота, а также синтетические полимеры. Матрицы из таких материалов постепенно разрушаются в организме (биодеградируют) и замещаются новыми тканями организма.
Для того чтобы посадить имеющиеся клеточные культуры на матрицу и помочь им образовать новую трехмерную ткань, инженеры сконструировали различные виды биореакторов. Кровеносные сосуды выращивают в пульсирующем биореакторе, который создает поток культуральной жидкости, тем самым имитируя ток крови в кровеносном русле (рис. 2). При этом механические воздействия, которым подвергаются клетки, оказывают благоприятное влияние на рост ткани. Таким образом, в биореакторе вырастает живой кровеносный сосуд, который затем имплантируют пациенту [7].
Рисунок 2. Биореактор для выращивания сосудов
[7]
Однако для того, чтобы вырастить орган, необходимо значительное время. Работая над проблемой создания протеза кровеносного сосуда, мы столкнулись с вопросом: что же делать в том случае, если пациент нуждается в срочном проведении операции, например аортокоронарном шунтировании, и не может ждать, пока его кровеносный сосуд вырастет? Чтобы ответить на этот вопрос и найти решение данной проблемы, мы обратились к одному из подходов тканевой инженерии, а именно выращиванию органов в организме пациента. Как же это возможно? Для этого матрица помещается в тот орган, часть которого необходимо восстановить. Таким образом, человеческий организм сам играет роль биореактора, и орган растет на матрице в благоприятной для него среде. Данный подход также предполагает использование матриц из биодеградируемого, то есть разрушаемого материала. Это необходимо для того, чтобы к моменту окончательного формирования органа материал матрицы полностью удалился из организма. Формирование органа, таким образом, возможно благодаря тому, что стволовые клетки организма способны мигрировать в зоны повреждения, где они активно делятся и осуществляют восстановление тканей.
И создал Господь Бог человека из праха земного… Ветхий завет, Книга Бытия
Основываясь на данном подходе, нами был разработан сосудистый тканеинженерный графт, который имплантируется в ту область кровеносного русла, которая требует восстановления. В своей работе мы использовали синтетический полимер — поликапролактон. Поскольку известно, что синтетические полимеры более прочны по сравнению с природными, их чаще используют для изготовления тканеинженерных матриц. Поликапролактон известен высокой прочностью и эластичностью, а также тем, что его разрушение в организме происходит в течение длительного времени (более одного года) [8]. Считается, что этого времени должно быть достаточно для того, чтобы сформировался новый полноценный кровеносный сосуд.
Мы изготовили матрицы кровеносных сосудов из поликапролактона диаметром 2 мм (см. заглавный рисунок) с помощью метода электроспиннинга. Элетроспиннинг не имеет ничего общего с электрической удочкой и рыбалкой, а представляет собой метод создания очень тонких волокон из раствора полимера под действием электростатичесих сил. Материалы, получаемые данным методом, состоят из волокон, которые имеют микро- и наноразмеры [9].
Изготовленные матрицы состоят из волокон диаметром около 3 мкм, которые переплетаются между собой и образуют тем самым огромное количество пор (рис. 3). Такая структура материала очень нравится стволовым клеткам, которые способны проникать в стенку пористой матрицы и располагаться в порах как в нишах. Проникая в структуру матрицы, клетки активно делятся, растут и вырабатывают внеклеточное вещество, состоящее из коллагеновых и других волокон, которое впоследствии замещает полимерный материал [10].
Рисунок 3. Сканирующая электронная микроскопия матрицы из поликапролактона, изготовленной методом электроспиннинга
Проведя оценку механических свойств наших сосудистых матриц, мы смогли убедиться в том, что они не уступают по прочности и эластичности уже существующим синтетическим и биологическим протезам, которые используются в настоящее время в сердечно-сосудистой хирургии. А это значит, что после имплантации в кровеносное русло они смогут выдержать нагрузку, создаваемую током крови, и будут прекрасно выполнять свою функцию.
Так как сосудистые матрицы взаимодействуют непосредственно с кровью, очень важно, чтобы материал, из которого они изготовлены, не провоцировал образование тромбов. В противном случае образовавшиеся тромбы будут препятствовать току крови, что может привести к трагичным последствиям. В экспериментах с использованием донорской крови мы определили, что разрабатываемая матрица для восстановления кровеносного сосуда не вызывает образование тромбов, а значит, может быть имплантирована в кровеносное русло живого организма.
Однако для более полной оценки свойств сосудистых матриц их имплантировали в кровеносное русло крыс, а именно в брюшную часть аорты (рис. 4). В течение года мы наблюдали с помощью ультразвукового анализа, что имплантированная матрица проходима для крови. После чего матрицы извлекли из животных, и, оценивая их под световым микроскопом, обнаружили, что вся пористая стенка сплошь пронизана клетками, между которыми находится межклеточное вещество. Кроме того, вся внутренняя поверхность матрицы покрыта эндотелиальными клетками. Эти клетки формируют внутреннюю выстилку всех кровеносных сосудов. Все это свидетельствует о формировании на основе полимерной матрицы нового кровеносного сосуда.
Рисунок 4. Крыса линии Wistar после имплантации сосудистой матрицы
Проведенные нами исследования показывают, что в организме крысы такие сосудистые матрицы прекрасно функционируют и остаются проходимы в течение длительного времени (рис. 5). Однако человеческий организм слишком сильно отличается от организма крысы, в связи с чем необходимо проведение дальнейших исследований по усовершенствованию и тестированию матриц для регенерации кровеносных сосудов. Необходимо быть полностью уверенным, что матрицы абсолютно безопасны для здоровья человека. Используемый нами подход к выращиванию кровеносных сосудов направлен на то, чтобы исключить длительные и сложные этапы, связанные с получением клеток у пациента, увеличением их количества, а также культивированием на матрице в биореакторе. Это позволит очень быстро оказать помощь пациенту и значительно снизить затраты на выращивание органа. Стоимость тканеинженерных органов представляет собой одну из проблем тканевой инженерии, поскольку полное создание органа в биореакторе является очень дорогостоящей процедурой. Поэтому для того, чтобы тканеинженерные продукты были доступны для использования в медицинской практике, цена на них должна быть адекватной.
Рисунок 5. Компьютерная томография сосудистой матрицы, имплантированной в аорту крысе, через год после имплантации
В настоящее время в мире активно ведутся работы по выращиванию практически всех тканей и органов человеческого тела. Некоторые из них уже находятся в клиническом использовании, другие — еще на испытаниях и в разработке. Возможно, стремительный прогресс в области создания и восстановления поврежденных органов в скором времени приведет к широкому применению данной технологии в клинической практике и поможет продлить жизнь многим пациентам. А для некоторых больных тканеинженерные органы могут стать последней надеждой.
Исследование проведено при сотрудничестве Лаборатории клеточных технологий ФГБУ «НИИ комплексных проблем сердечно-сосудистых заболеваний» СО РАМН, г. Кемерово, Россия (под руководством к.м.н. Алексея Сергеевича Головкина) и Cleveland VA Medical Center, Огайо, Кливленд, США (под руководством д.м.н. Якова Львовича Эльгудина).
Функциональные характеристики капиллярной сети
Общая емкость капиллярного русла составляет 25–30 л, тогда как объем крови в теле человека равен 5 л. Поэтому большая часть капилляров периодически выключается из кровотока. У человека в условиях покоя одновременно открыто только 20–35% капилляров. В мышце при спокойном состоянии заполнено кровью не более 40% капилляров. При физических нагрузках в кровоток включаются почти все капилляры работающей мышцы. Капилляры сами не способны изменять свой просвет. Как уже было сказано, кровоток в них регулируется посредством сужения или расширения приносящих кровь артериол и использования артериоловенулярных анастомозов. Наблюдения свидетельствуют, что в органах постоянно происходит замена одних функционирующих капилляров другими. Высокая изменчивость кровотока в капиллярах – необходимое условие приспособления микроциркуляторной системы к потребностям органов и тканей в доставке питательных веществ.
Особенности кровотока в капиллярах
Поскольку емкость капиллярного русла очень большая, это ведет к значительному замедлению тока крови в капиллярах. Скорость движения крови по капиллярам колеблется от 0,3 до 1 мм/с, тогда как в крупных артериях она достигает 80–130 мм/с. Медленный кровоток обеспечивает наиболее полный обмен веществ между кровью и тканями. При движении крови ее клетки (эритроциты) выстраиваются в капилляре в один ряд, поскольку их радиус приблизительно равен радиусу капилляра. Значение такого приспособления становится понятно, если вспомнить, что кислород переносится эритроцитами и его передача клеткам органов будет происходить наиболее эффективно, если эритроциты наилучшим образом соприкасаются со стенкой капилляра. При движении по капиллярам эритроциты легко деформируются, поэтому даже наиболее узкие капилляры не являются для них препятствием. В отличие от эритроцитов другие клетки крови (лимфоциты) с трудом преодолевают узкие участки капиллярного русла и могут на какое-то время закупоривать просвет капилляра.
При значительном снижении скорости капиллярного кровотока эритроциты могут склеиваться между собой и образовывать агрегаты по типу монетных столбиков из 25–50 эритроцитов. Крупные агрегаты могут полностью закупорить капилляр и вызвать в нем остановку крови. Усиление агрегации эритроцитов происходит при различных заболеваниях.
Конспект по биологии на тему «Сосуды кровеносной системы артерии, вены, капилляры» (8 класс).
Тема занятия
«Сосуды кровеносной системы: артерии, вены, капилляры».
В организме человека кровь непрерывно движется по замкнутой системе сосудов в строго определённом направлении. Это непрерывное движение крови называется кровообращением
. Оно зависит от работы сердца, которое служит основным двигателем крови. Сердце нагнетает кровь в сосуды, обеспечивает её движение и возвращение к самому сердцу.
Система органов кровообращения
= сердце + кровеносные сосуды: артерии + вены + капилляры, которые пронизывают все органы и ткани человека.
У человека
, как и у всех представителей типа Хордовые животные,
замкнутая кровеносная система
, т.е. кровь передвигается в нашем организме только по кровеносным сосудам и не выливается в полости органов и стенки тела.
Строение и функции кровеносных сосудов
.
Выделят 3 типа кровеносных сосудов: артерии, вены и капилляры.
1. Артерии
– это сосуды, по которым
кровь течёт от сердца к органам.
« стенки артерий
содержат очень много мышечных клеток, они
очень толстые, многослойные и эластичны
, что позволяет им выдерживать давление крови, выталкиваемой из сердца;
« внутренний слой стенок состоит из одного слоя плоских эпителиальных клеток;
« средний слой образован тканями гладкой мускулатуры. Он толстый
и его сокращение способствует продвижению крови по сосудам;
« наружный слой образов плотной соединительной тканью;
« диаметр сосуда уменьшается по направлению от сердца к органам;
« скорость тока крови составляет приблизительно 0,5 м в с.;
« давление крови 120 мм. рт. ст.;
« количество крови: 17%.
Рисунок 1 – Особенности строения артерий
2. Вены
– это сосуды, по которым
кровь течёт от органов к сердцу.
« стенки вен
трёхслойные, менее толстые, эластичные,
чем стенки артерий, но
более растяжимы;
« внутренний слой стенок состоит из одного слоя плоских эпителиальных клеток;
« средний слой образован тканями гладкой мускулатуры. Он тонкий, в нём
есть карманоподобные клапаны
, препятствующие движению крови в обратном направлении;
« диаметр сосуда увеличивается по направлению от органов к сердцу;
« скорость тока крови составляет приблизительно 0,2 м в с.;
« давление крови 10 мм. рт. ст.;
« количество крови: 67%.
Рисунок 2 – Особенности строения вен
3. Капилляры
– это мельчайшие сосуды,
стенки которых тонкие, однослойные, микроскопические и образованы только эпителиальной тканью.
« диаметр сосуда по своим размерам меньше волоса;
« скорость тока крови составляет приблизительно 0,05 мм в с.;
« давление крови 30 мм. рт. ст.;
« количество крови: 16%;
« в них происходит обмен жидкостями, питательными веществами и газами между кровью и тканями (обмен веществ);
« в мембранах этих клеток имеются многочисленные отверстия, которые облегчают прохождение через стенку капилляров веществ, участвующих в обмене.
Рисунок 3 – Особенности строения капилляров
Сравнительная характеристика кровеносных сосудов
Признак | Артерии | Вены | Капилляры |
Функция сосуда | несут кровь от сердца к органам | несут кровь от органов к сердцу | обмен веществ, газами между кровью и тканями |
Особенности строения стенок | толстые, многослойные, эластичные | трёхслойные, менее толстые и эластичные, чем артерии, более растяжимы | тонкие, однослойные, микроскопические |
Наличие клапанов (нет/ есть) | нет | есть | нет |
Наружный слой | слой плотной соединительной ткани | нет | |
Средний слой гладкой мускулатуры | толстый | тонкий | нет |
Внутренний слой | состоит из одного слоя плоских эпителиальных клеток | ||
Диаметр сосуда | уменьшается по направлению от сердца | увеличивается по направлению к сердцу | тоньше волоса |
Скорость тока крови, м, мм/с | 0,5 м в секунду | 0,2 м в секунду | 0,05 мм в секунду |
Давление крови, в мм. рт. ст. | 120 мм. рт. ст. | 10 мм. рт. ст. | 30 мм. рт. ст. |
Количество крови, в % | 17% | 67% | 16% |
Дополнительная информация:
1. Крупные артерии разделяются на более мелкие – артериолы
, которые в свою очередь разветвляются до
микроскопических капилляров,
оплетающих все ткани. Капилляры соединяются в тонкие венозные сосуды –
венулы
, которые сливаются вместе и образуют
вены
.
Рисунок 4 – Кровеносные сосуды
2. Так как венозные стенки в отличие от артерий не упругие, то есть вспомогательный механизм, способствующий движению крови от органов к сердцу. Стимулируют кровообращение скелетные мышцы, расположенные рядом с венами. При сокращении мышц венозные сосуды сдавливаются и проталкивают кровь. В обратном направление кровь не может двигаться, так как в венах есть клапаны, открывающиеся только в нужном направлении. Так работает мышечный, или венозный насос.
Рисунок 5 – Венозный насос
3. В местах перехода мельчайших артерий в капилляры имеются скопления мышечных клеток. Сокращения этих клеток меняют просвет сосудов, открывают или прекращают поступление крови в капилляры. Обычно у человека в состоянии покоя открыто для кровотока только 20-30% капилляров. Во время усиленной работы открываются и включаются в кровоток дополнительные капилляры. Этот механизм особенно хорошо развит у спортсменов.
Рисунок 6 – Мышечные регуляторы просвета капилляров
4. Самая крупная артерия организма – аорта. Её диаметр у взрослого человека равен приблизительно 3-4 см.
Регулирование микроциркуляции крови
Как же происходит регуляция микроциркуляции? Во-первых, микрососуды реагируют на растяжение: при повышении давления крови артериолы суживаются и ограничивают приток крови в капилляры, при снижении давления расширяются. Во-вторых, к наиболее крупным из микрососудов (но не к капиллярам) подходят симпатические нервы, при раздражении которых происходит сужение крупных артериол и венул. В-третьих, микрососуды очень чувствительны к растворенным в крови вазоактивным веществам и реагируют даже на такую их концентрацию, которая в 10–100 раз меньше необходимой для сужения или расширения крупных сосудов. Так, кожные сосуды проявляют высокую чувствительность к адреналину (полное закрытие просвета артериол происходит при его ничтожной концентрации в крови – кожные покровы бледнеют), в то время как микрососуды внутренних органов гораздо менее чувствительны, а микрососуды скелетных мышц и сердца при действии адреналина могут расширяться. Ионы калия, кальция, натрия, а также вещества, накапливающиеся в тканях при их интенсивной деятельности, приводят к расширению микрососудов. Наибольшей чувствительностью к действию вазоактивных веществ обладают прекапиллярные артериолы, наименьшей – крупные артериолы и венулы.
Проверочная работа по теме «Строение сердца и сосудов»
12*.
Прочитайте текст и выполните задание.
КРОВЕНОСНЫЕ СОСУДЫ
Артерии и вены – крупные кровеносные сосуды. Их внутренний слой образован плоскими плотно прилегающими друг к другу клетками. Средний слой состоит из эластичных волокон и гладких мышц. Их сокращение и расслабление влияет на объём крови, протекающей в сосуде. Это обеспечивает приспособленность организма к физическим и психическим нагрузкам. Наружный слой образован соединительной тканью.
Артерии – сосуды, по которым кровь движется от сердца. Самая крупная артерия – аорта, скорость крови в ней примерно 0,5 м/с. Стенки артерий образованы большим количеством эластических волокон и толстым мышечным слоем. На ощупь они плотные и упругие, не спадающие, выдерживают высокое давление крови, которое в спокойном состоянии составляет около 120 мм рт. ст. Артерии разветвляются на более мелкие сосуды – артериолы, плавно переходящие в тончайшие сосуды – капилляры. Стенки капилляров состоят из одного слоя клеток, и через них легко происходит обмен веществ и газов между кровью и тканевой жидкостью.
Из капилляров кровь собирается сначала в мелкие, затем в крупные вены – сосуды, по которым кровь течёт к сердцу. Стенки вен тонки и растяжимы, содержат мало гладкомышечных клеток, поэтому в них накапливается значительная часть крови. Скорость крови в венах нарастает и составляет 6–25 см/с, а давление падает. В стенках крупных вен имеются особые складки – клапаны. Они предотвращают обратный ток крови.
Используя содержание текста «Кровеносные сосуды», ответьте на вопрос и решите задачу.
1) Какие свойства характерны для артерий?
2) Зная скорость течения крови в аорте, рассчитайте примерно скорость тока крови в капиллярах, если известно, что суммарный просвет капилляров в 1000 раз больше, чем просвет аорты.
3) Какое биологическое значение имеет такая скорость кровотока для дыхания?
Проверочная работа по теме: «Строение сердца и сосудов»
Вариант 2.
1.
В каких(-ом) органах(-е) кровеносной системы человека одновременно сосредоточено более 60% всей его крови?
1)
вены
2)
артерии
3)
аорта
4)
сердце
2.
На рисунке изображена схема строения сердца человека. Какой буквой на ней обозначено правое предсердие?
1)
А
2)
Б
3)
В
4)
Г
3.
Стенки артерий отличаются от вен
1)
количеством слоёв
2)
последовательностью слоёв
3)
строением внутреннего слоя
4)
более мощными наружным и средним слоями
4.
По какому сосуду течёт кровь, насыщенная кислородом?
1)
лёгочная артерия
2)
подключичная артерия
3)
верхняя полая вена
4)
почечная вена
5.
Какой сосуд НЕ содержит артериальной крови?
1)
лёгочная артерия
2)
сонная артерия
3)
бедренная артерия
4)
почечная артерия
6.
Количество сокращений сердца в минуту можно определить, измеряя
1)
пульс
2)
кровяное давление
3)
скорость движения крови
4)
содержание эритроцитов в крови
7.
Обратному движению крови из желудочков в предсердия сердца препятствует(-ют)
1)
околосердечная сумка
2)
створчатые клапаны
3)
перегородка сердечной мышцы
4)
полулунные клапаны
8.
Одной из функций кровеносных сосудов является
1)
транспорт питательных веществ
2)
нервная регуляция внутренних органов
3)
сокращение скелетных мышц
4)
запасание питательных веществ
9.
У какого отдела сердца самая толстая стенка?
1)
левый желудочек
2)
правый желудочек
3)
левое предсердие
4)
правое предсердие
10.
Какой цифрой на рисунке обозначен лёгочный ствол (лёгочная артерия)?
1)
1
2)
2
3)
3
4)
4
11*.
Установите соответствие между кровеносным сосудом и направлением движения крови в нём: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.
Диагностика расстройств микроциркуляции крови
Актуальные для современной клинической практики оценка состояния микроциркуляции и диагностика ее расстройств при самых различных заболеваниях можно сделать с помощью таких методов, как капилляроскопия кожи и слизистых оболочек, биомикроскопия сосудов конъюнктивы, лазерная допплеровская флоуметрия. Состояние микроциркуляции в любом участке тела с большой степенью точности дает возможность судить о ее состоянии в организме в целом.
Ранними признаками нарушений капиллярного кровотока являются сужение артериол, застойные явления в венулах, приводящие к их расширению и значительной извитости, а также снижение интенсивности кровотока в капиллярах. На более поздних стадиях выявляется распространенная внутрисосудистая агрегация эритроцитов, что неизбежно влечет за собой остановку кровотока в капиллярах. Финал микроциркуляторных расстройств – стаз, т. е. полная блокада кровотока и резкое нарушение барьерной функции микрососудов, что нередко сопровождается кровоизлияниями – выходом эритроцитов через стенку капилляров, которые являются наиболее ранимыми. Артериоловенулярные анастомозы более устойчивы к расстройствам микроциркуляции и проявляют тенденцию к сохранению кровотока даже в условиях распространения стаза на значительную часть микроциркуляторного русла.
Расстройства микроциркуляции лежат в основе большого числа заболеваний, поэтому при их лечении необходимо восстановление функций микрососудов с помощью различных лекарственных средств.
Автор: Ольга Гурова, кандидат биологических наук, старший научный сотрудник, доцент кафедры анатомии человека РУДН